def discriminator_model(self):
model = Sequential()
model.add(Convolution2D(
8, 10, 10,
border_mode='same',
input_shape=(1, 144, 144)))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(4, 4)))
model.add(Convolution2D(16, 10, 10))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(4, 4)))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('tanh'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
return model
评论列表
文章目录