def reduction_A(input, k=192, l=224, m=256, n=384):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
r1 = MaxPooling2D((3,3), strides=(2,2))(input)
r2 = Convolution2D(n, 3, 3, activation='relu', subsample=(2,2))(input)
r3 = Convolution2D(k, 1, 1, activation='relu', border_mode='same')(input)
r3 = Convolution2D(l, 3, 3, activation='relu', border_mode='same')(r3)
r3 = Convolution2D(m, 3, 3, activation='relu', subsample=(2,2))(r3)
m = merge([r1, r2, r3], mode='concat', concat_axis=channel_axis)
m = BatchNormalization(axis=channel_axis)(m)
m = Activation('relu')(m)
return m
评论列表
文章目录