def build_model(nb_filters=32, nb_pool=2, nb_conv=3):
model = models.Sequential()
d = Dense(30)
c = Convolution2D(nb_filters, nb_conv, nb_conv, border_mode='same', input_shape=(1, 28, 28))
mp =MaxPooling2D(pool_size=(nb_pool, nb_pool))
# ========= ENCODER ========================
model.add(c)
model.add(Activation('tanh'))
model.add(mp)
model.add(Dropout(0.25))
# ========= BOTTLENECK ======================
model.add(Flatten())
model.add(d)
model.add(Activation('tanh'))
# ========= BOTTLENECK^-1 =====================
model.add(DependentDense(nb_filters * 14 * 14, d))
model.add(Activation('tanh'))
model.add(Reshape((nb_filters, 14, 14)))
# ========= DECODER =========================
model.add(DePool2D(mp, size=(nb_pool, nb_pool)))
model.add(Deconvolution2D(c, border_mode='same'))
model.add(Activation('tanh'))
return model
conv_autoencoder.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录