def conv2d_bn(x, nb_filter, num_row, num_col,
padding='same', strides=(1, 1), use_bias=False):
"""
Utility function to apply conv + BN.
(Slightly modified from https://github.com/fchollet/keras/blob/master/keras/applications/inception_v3.py)
"""
if K.image_data_format() == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
x = Convolution2D(nb_filter, (num_row, num_col),
strides=strides,
padding=padding,
use_bias=use_bias,
kernel_regularizer=regularizers.l2(0.00004),
kernel_initializer=initializers.VarianceScaling(scale=2.0, mode='fan_in', distribution='normal', seed=None))(x)
x = BatchNormalization(axis=channel_axis, momentum=0.9997, scale=False)(x)
x = Activation('relu')(x)
return x
评论列表
文章目录