def seqCNN_CPT(c_conf=(4, 3, 32, 32), p_conf=(4, 3, 32, 32), t_conf=(4, 3, 32, 32)):
'''
C - Temporal Closeness
P - Period
T - Trend
conf = (nb_flow, seq_len, map_height, map_width)
'''
model = Sequential()
components = []
for conf in [c_conf, p_conf, t_conf]:
if conf is not None:
components.append(seqCNNBaseLayer1(conf))
nb_flow = conf[0]
model.add(Merge(components, mode='concat', concat_axis=1)) # concat
model.add(Convolution2D(64, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(nb_flow, 3, 3, border_mode='same'))
model.add(Activation('tanh'))
return model
评论列表
文章目录