def normalize_columns_separately(data_obj, column_headers):
final_columns = []
# print column_headers
columns = data_obj.get_data(column_headers).transpose().tolist()
for column in columns:
temp_column = []
max_num = max(column)
min_num = min(column)
for number in column:
number -= min_num
number *= 1 / (max_num - min_num)
temp_column.append(number)
final_columns.append(temp_column)
# print "Normalized matrix"
# print np.matrix(final_columns).transpose()
print "\n\n"
return np.matrix(final_columns).transpose()
# Takes in a list of column headers and the Data object and returns a matrix with each entry normalized so that the
# minimum value (of all the data in this set of columns)
# is mapped to zero and its maximum value is mapped to 1.
评论列表
文章目录