def predict(input_string):
mask = lambda w, v: 1 if w not in v else v[w]
tknzr = TweetTokenizer(reduce_len=True, preserve_case=False)
words = tknzr.tokenize(input_string)
vec = [[mask(w, pd.vocab) for w in words]]
vec = np.array( vec, dtype="int32")
vec = pad_sequences(vec, maxlen=pd.max_sequence)
predictions = model.predict(vec)
sarcasm = round(predictions[0][1], 2) * 100
return (words, sarcasm)
##################################################################
prediction_server.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录