vqa_processed.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:vqa.pytorch 作者: Cadene 项目源码 文件源码
def preprocess_questions(examples, nlp='nltk'):
    if nlp == 'nltk':
        from nltk.tokenize import word_tokenize
    print('Example of generated tokens after preprocessing some questions:')
    for i, ex in enumerate(examples):
        s = ex['question']
        if nlp == 'nltk':
            ex['question_words'] = word_tokenize(str(s).lower())
        elif nlp == 'mcb':
            ex['question_words'] = tokenize_mcb(s)
        else:
            ex['question_words'] = tokenize(s)
        if i < 10:
            print(ex['question_words'])
        if i % 1000 == 0:
            sys.stdout.write("processing %d/%d (%.2f%% done)   \r" %  (i, len(examples), i*100.0/len(examples)) )
            sys.stdout.flush() 
    return examples
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号