def tucker_tensor(shape, rank, full=False, random_state=None):
"""Generates a random Tucker tensor
Parameters
----------
shape : tuple
shape of the tensor to generate
rank : int or int list
rank of the Tucker decomposition
if int, the same rank is used for each mode
otherwise, dimension of each mode
full : bool, optional, default is False
if True, a full tensor is returned
otherwise, the decomposed tensor is returned
random_state : `np.random.RandomState`
Returns
-------
tucker_tensor : ND-array or (ND-array, 2D-array list)
ND-array : full tensor if `full` is True
(ND-array, 2D-array list) : core tensor and list of factors otherwise
"""
rns = check_random_state(random_state)
if isinstance(rank, int):
rank = [rank for _ in shape]
for i, (s, r) in enumerate(zip(shape, rank)):
if r > s:
raise ValueError('The rank should be smaller than the tensor size, yet rank[{0}]={1} > shape[{0}]={2}.'.format(i, r, s))
factors = []
for (s, r) in zip(shape, rank):
Q, _= qr(rns.random_sample((s, s)))
factors.append(T.tensor(Q[:, :r]))
core = T.tensor(rns.random_sample(rank))
if full:
return tucker_to_tensor(core, factors)
else:
return core, factors
评论列表
文章目录