Content_Based.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:newsrecommender 作者: Newsrecommender 项目源码 文件源码
def calculate_similarity(self, article1, article2, type):
        """
        Calculate the similarity between two articles, e.g. the cosine similarity or the Euclidean distance.
        :param article1: coordinates (feature values) of article 1
        :param article2: coordinates (feature values) of article 2
        :return:
        """
        if self.type == 'Cos':
            similarity = self.cosine_similarity(article1, article2)  # Cosine similarity formula
        if self.type == 'Euc':
            similarity = self.euclidean_distance(article1, article2)  # Euclidean distance formula   
        '''
        if self.type == 'Jac':
            similarity = self.calculate_jaccard_score(article1, article2)  # jaccard distance formula      
        '''
        similarity = "{0:.2f}".format(round(similarity, 2))
        return float(similarity)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号