classification.py 文件源码

python
阅读 28 收藏 0 点赞 0 评论 0

项目:brainiak 作者: brainiak 项目源码 文件源码
def example_of_cross_validation_with_detailed_info(raw_data, labels, num_subjects, num_epochs_per_subj):
    # no shrinking, set C=1
    svm_clf = svm.SVC(kernel='precomputed', shrinking=False, C=1)
    #logit_clf = LogisticRegression()
    clf = Classifier(svm_clf, epochs_per_subj=num_epochs_per_subj)
    # doing leave-one-subject-out cross validation
    for i in range(num_subjects):
        leave_start = i * num_epochs_per_subj
        leave_end = (i+1) * num_epochs_per_subj
        training_data = raw_data[0:leave_start] + raw_data[leave_end:]
        test_data = raw_data[leave_start:leave_end]
        training_labels = labels[0:leave_start] + labels[leave_end:]
        test_labels = labels[leave_start:leave_end]
        clf.fit(list(zip(training_data, training_data)), training_labels)
        # joblib can be used for saving and loading models
        #joblib.dump(clf, 'model/logistic.pkl')
        #clf = joblib.load('model/svm.pkl')
        predict = clf.predict(list(zip(test_data, test_data)))
        print(predict)
        print(clf.decision_function(list(zip(test_data, test_data))))
        incorrect_predict = hamming(predict, np.asanyarray(test_labels)) * num_epochs_per_subj
        logger.info(
            'when leaving subject %d out for testing, the accuracy is %d / %d = %.2f' %
            (i, num_epochs_per_subj-incorrect_predict, num_epochs_per_subj,
             (num_epochs_per_subj-incorrect_predict) * 1.0 / num_epochs_per_subj)
        )
        print(clf.score(list(zip(test_data, test_data)), test_labels))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号