def _run_algorithm(self):
attr = self._get_attribute_info()
nan_entries = np.isnan(self._X)
NNlist = map(self._find_neighbors, range(self._datalen))
scores = np.sum(Parallel(n_jobs=self.n_jobs)(delayed(
ReliefF_compute_scores)(instance_num, attr, nan_entries, self._num_attributes,
NN, self._headers, self._class_type, self._X, self._y, self._labels_std)
for instance_num, NN in zip(range(self._datalen), NNlist)), axis=0)
return np.array(scores)
评论列表
文章目录