def _extract_features(self, topNIndices, topNDistances, y, distances):
samples = self._split_samples(topNIndices, topNDistances, y)
training_data_list = Parallel(n_jobs=self.n_jobs)(
delayed(_analyze)(tI, tD, y, distances, self.dependencies) for tI, tD, y in samples)
# merge training data
training_data = defaultdict(list)
for training_data_dict in training_data_list:
for label, training_samples_of_label in training_data_dict.items():
training_data[label].extend(training_data_dict[label])
return training_data
评论列表
文章目录