def _do_fit(n_jobs, verbose, pre_dispatch, base_estimator,
X, y, scorer, parameter_iterable, fit_params,
error_score, cv, **kwargs):
groups = kwargs.pop('groups')
# test_score, n_samples, parameters
out = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)(
delayed(_fit_and_score)(
clone(base_estimator), X, y, scorer,
train, test, verbose, parameters,
fit_params=fit_params,
return_train_score=False,
return_n_test_samples=True,
return_times=False,
return_parameters=True,
error_score=error_score)
for parameters in parameter_iterable
for train, test in cv.split(X, y, groups))
# test_score, n_samples, _, parameters
return [(mod[0], mod[1], None, mod[2]) for mod in out]
评论列表
文章目录