def pca(dataMat,n):
print "Start to do PCA..."
newData,meanVal=zeroMean(dataMat)
# covMat=np.cov(newData,rowvar=0)
# eigVals,eigVects=np.linalg.eig(np.mat(covMat))
# joblib.dump(eigVals,'./features/PCA/eigVals_train_%s.eig' %m,compress=3)
# joblib.dump(eigVects,'./features/PCA/eigVects_train_%s.eig' %m,compress=3)
eigVals = joblib.load('./features/PCA/eigVals_train_%s.eig' %m)
eigVects = joblib.load('./features/PCA/eigVects_train_%s.eig' %m)
eigValIndice=np.argsort(eigVals)
n_eigValIndice=eigValIndice[-1:-(n+1):-1]
n_eigVect=eigVects[:,n_eigValIndice]
# joblib.dump(n_eigVect,'./features/PCA/n_eigVects_train_%s_%s.eig' %(m,n))
lowDDataMat=newData*n_eigVect
return lowDDataMat
6_PSO+PCA.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录