vectorizer.py 文件源码

python
阅读 34 收藏 0 点赞 0 评论 0

项目:FreeDiscovery 作者: FreeDiscovery 项目源码 文件源码
def _vectorize_chunk(dsid_dir, k, pars, pretend=False):
    """ Extract features on a chunk of files """
    from sklearn.feature_extraction.text import HashingVectorizer
    from sklearn.externals import joblib

    filenames = pars['filenames_abs']
    chunk_size = pars['chunk_size']
    n_samples = pars['n_samples']

    mslice = slice(k*chunk_size, min((k+1)*chunk_size, n_samples))

    hash_opts = {key: vals for key, vals in pars.items()
                 if key in ['stop_words', 'n_features',
                            'analyser', 'ngram_range']}
    hash_opts['alternate_sign'] = False
    fe = HashingVectorizer(input='content', norm=None, **hash_opts)
    if pretend:
        return fe
    fset_new = fe.transform(_read_file(fname) for fname in filenames[mslice])

    fset_new.eliminate_zeros()

    joblib.dump(fset_new, str(dsid_dir / 'features-{:05}'.format(k)))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号