base.py 文件源码

python
阅读 28 收藏 0 点赞 0 评论 0

项目:Parallel-SGD 作者: angadgill 项目源码 文件源码
def fit(self, X, y, sample_weight=None):
        """
        Fit linear model.

        Parameters
        ----------
        X : numpy array or sparse matrix of shape [n_samples,n_features]
            Training data

        y : numpy array of shape [n_samples, n_targets]
            Target values

        sample_weight : numpy array of shape [n_samples]
            Individual weights for each sample

            .. versionadded:: 0.17
               parameter *sample_weight* support to LinearRegression.

        Returns
        -------
        self : returns an instance of self.
        """

        n_jobs_ = self.n_jobs
        X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
                         y_numeric=True, multi_output=True)

        if sample_weight is not None and np.atleast_1d(sample_weight).ndim > 1:
            raise ValueError("Sample weights must be 1D array or scalar")

        X, y, X_offset, y_offset, X_scale = self._preprocess_data(
            X, y, fit_intercept=self.fit_intercept, normalize=self.normalize,
            copy=self.copy_X, sample_weight=sample_weight)

        if sample_weight is not None:
            # Sample weight can be implemented via a simple rescaling.
            X, y = _rescale_data(X, y, sample_weight)

        if sp.issparse(X):
            if y.ndim < 2:
                out = sparse_lsqr(X, y)
                self.coef_ = out[0]
                self._residues = out[3]
            else:
                # sparse_lstsq cannot handle y with shape (M, K)
                outs = Parallel(n_jobs=n_jobs_)(
                    delayed(sparse_lsqr)(X, y[:, j].ravel())
                    for j in range(y.shape[1]))
                self.coef_ = np.vstack(out[0] for out in outs)
                self._residues = np.vstack(out[3] for out in outs)
        else:
            self.coef_, self._residues, self.rank_, self.singular_ = \
                linalg.lstsq(X, y)
            self.coef_ = self.coef_.T

        if y.ndim == 1:
            self.coef_ = np.ravel(self.coef_)
        self._set_intercept(X_offset, y_offset, X_scale)
        return self
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号