discriminant_analysis.py 文件源码

python
阅读 32 收藏 0 点赞 0 评论 0

项目:Parallel-SGD 作者: angadgill 项目源码 文件源码
def _solve_lsqr(self, X, y, shrinkage):
        """Least squares solver.

        The least squares solver computes a straightforward solution of the
        optimal decision rule based directly on the discriminant functions. It
        can only be used for classification (with optional shrinkage), because
        estimation of eigenvectors is not performed. Therefore, dimensionality
        reduction with the transform is not supported.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,) or (n_samples, n_classes)
            Target values.

        shrinkage : string or float, optional
            Shrinkage parameter, possible values:
              - None: no shrinkage (default).
              - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
              - float between 0 and 1: fixed shrinkage parameter.

        Notes
        -----
        This solver is based on [1]_, section 2.6.2, pp. 39-41.

        References
        ----------
        .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
           (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
           0-471-05669-3.
        """
        self.means_ = _class_means(X, y)
        self.covariance_ = _class_cov(X, y, self.priors_, shrinkage)
        self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T
        self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T))
                           + np.log(self.priors_))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号