def sample_fun(self, model, **sampler_options):
params_array = hyperparameter_utils.params_to_array(self.params)
if model.has_data:
K_XX = model.noiseless_kernel.cov(model.inputs)
current_L = spla.cholesky(K_XX, lower=True)
nu = spla.solve_triangular(current_L, model.latent_values.value-model.mean.value, lower=True)
else:
nu = None # if no data
new_params, current_ll = slice_sample(params_array, self.logprob, model, nu, **sampler_options)
new_latent_values = self._compute_implied_y(model, nu)
return new_params, new_latent_values, current_ll
whitened_prior_slice_sampler.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录