def estimation(self, y, ds):
""" Estimate KGV.
Parameters
----------
y : (number of samples, dimension)-ndarray
One row of y corresponds to one sample.
ds : int vector
Dimensions of the individual subspaces in y; ds[i] = i^th
subspace dimension.
Returns
-------
i : float
Estimated value of KGV.
References
----------
Francis Bach, Michael I. Jordan. Kernel Independent Component
Analysis. Journal of Machine Learning Research, 3: 1-48, 2002.
Francis Bach, Michael I. Jordan. Learning graphical models with
Mercer kernels. International Conference on Neural Information
Processing Systems (NIPS), pages 1033-1040, 2002.
Examples
--------
i = co.estimation(y,ds)
"""
# verification:
self.verification_compatible_subspace_dimensions(y, ds)
num_of_samples = y.shape[0]
tol = num_of_samples * self.eta
r = compute_matrix_r_kcca_kgv(y, ds, self.kernel, tol, self.kappa)
i = -log(det(r)) / 2
return i
评论列表
文章目录