def normal_eq_comb(AtA, AtB, PassSet=None):
""" Solve many systems of linear equations using combinatorial grouping.
M. H. Van Benthem and M. R. Keenan, J. Chemometrics 2004; 18: 441-450
Parameters
----------
AtA : numpy.array, shape (n,n)
AtB : numpy.array, shape (n,k)
Returns
-------
(Z,num_cholesky,num_eq)
Z : numpy.array, shape (n,k) - solution
num_cholesky : int - the number of unique cholesky decompositions done
num_eq: int - the number of systems of linear equations solved
"""
num_cholesky = 0
num_eq = 0
if AtB.size == 0:
Z = np.zeros([])
elif (PassSet is None) or np.all(PassSet):
Z = nla.solve(AtA, AtB)
num_cholesky = 1
num_eq = AtB.shape[1]
else:
Z = np.zeros(AtB.shape)
if PassSet.shape[1] == 1:
if np.any(PassSet):
cols = PassSet.nonzero()[0]
Z[cols] = nla.solve(AtA[np.ix_(cols, cols)], AtB[cols])
num_cholesky = 1
num_eq = 1
else:
#
# Both _column_group_loop() and _column_group_recursive() work well.
# Based on preliminary testing,
# _column_group_loop() is slightly faster for tiny k(<10), but
# _column_group_recursive() is faster for large k's.
#
grps = _column_group_recursive(PassSet)
for gr in grps:
cols = PassSet[:, gr[0]].nonzero()[0]
if cols.size > 0:
ix1 = np.ix_(cols, gr)
ix2 = np.ix_(cols, cols)
#
# scipy.linalg.cho_solve can be used instead of numpy.linalg.solve.
# For small n(<200), numpy.linalg.solve appears faster, whereas
# for large n(>500), scipy.linalg.cho_solve appears faster.
# Usage example of scipy.linalg.cho_solve:
# Z[ix1] = sla.cho_solve(sla.cho_factor(AtA[ix2]),AtB[ix1])
#
Z[ix1] = nla.solve(AtA[ix2], AtB[ix1])
num_cholesky += 1
num_eq += len(gr)
num_eq += len(gr)
return Z, num_cholesky, num_eq
评论列表
文章目录