def fit(self, X, y):
"""
Fits a t-Student Process regressor
Parameters
----------
X: np.ndarray, shape=(nsamples, nfeatures)
Training instances to fit the GP.
y: np.ndarray, shape=(nsamples,)
Corresponding continuous target values to `X`.
"""
self.X = X
self.y = y
self.n1 = X.shape[0]
if self.optimize:
self.optHyp(param_key=self.covfunc.parameters, param_bounds=self.covfunc.bounds)
self.K11 = self.covfunc.K(self.X, self.X)
self.beta1 = np.dot(np.dot(self.y.T, inv(self.K11)), self.y)
self.logp = logpdf(self.y, self.nu, mu=np.zeros(self.n1), Sigma=self.K11)
评论列表
文章目录