def word_features(table):
"""
Extract word features into a normalized matrix
"""
features = numpy.zeros((len(table), 620), dtype='float32')
keys = table.keys()
for i in range(len(table)):
f = table[keys[i]]
features[i] = f / norm(f)
return features
skipthoughts.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录