def parse_args():
parser = argparse.ArgumentParser(
description='A Simple Demo of Generative Adversarial Networks with 2D Samples',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('input_path',
help='Image or directory containing images to define distribution')
parser.add_argument('--z_dim',
help='Dimensionality of latent space',
type=int, default=2)
parser.add_argument('--iterations',
help='Num of training iterations',
type=int, default=2000)
parser.add_argument('--batch_size',
help='Batch size of each kind',
type=int, default=2000)
parser.add_argument('--optimizer',
help='Optimizer: Adadelta/Adam/RMSprop/SGD',
type=str, default='Adadelta')
parser.add_argument('--d_lr',
help='Learning rate of discriminator, for Adadelta it is the base learning rate',
type=float, default=1)
parser.add_argument('--g_lr',
help='Learning rate of generator, for Adadelta it is the base learning rate',
type=float, default=1)
parser.add_argument('--d_steps',
help='Steps of discriminators in each iteration',
type=int, default=3)
parser.add_argument('--g_steps',
help='Steps of generator in each iteration',
type=int, default=1)
parser.add_argument('--d_hidden_size',
help='Num of hidden units in discriminator',
type=int, default=100)
parser.add_argument('--g_hidden_size',
help='Num of hidden units in generator',
type=int, default=50)
parser.add_argument('--display_interval',
help='Interval of iterations to display/export images',
type=int, default=10)
parser.add_argument('--no_display',
help='Show plots during training', action='store_true')
parser.add_argument('--export',
help='Export images', action='store_true')
parser.add_argument('--cpu',
help='Set to CPU mode', action='store_true')
args = parser.parse_args()
args.input_path = args.input_path.rstrip(os.sep)
args.optimizer = OPTIMIZERS[args.optimizer.lower()]
return args
argparser.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录