def multilayer_perceptron():
train, test, valid = load_data('mnist.pkl.gz')
num_labels = 10
train_y = make_one_hot(train[1], num_labels)
valid_y = make_one_hot(valid[1], num_labels)
test_y = make_one_hot(test[1], num_labels)
mlp_model = Sequential()
mlp_model.add(Dense(300, activation='relu', input_dim=784))
mlp_model.add(Dense(10, activation='softmax'))
mlp_model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
mlp_model.fit(train[0], train_y, validation_data=(valid[0],valid_y), batch_size=32, epochs=10)
print('Test set loss and accuracy:', mlp_model.evaluate(test[0], test_y))
keras_example.py 文件源码
python
阅读 31
收藏 0
点赞 0
评论 0
评论列表
文章目录