def setUp(self):
if (hasattr(keras, '__version__')==False):
self.keras_version = 0.2 #didn't have the __version__ tag
else:
self.keras_version = float(keras.__version__[0:3])
self.inp = (np.random.randn(10*10*51)
.reshape(10,10,51).transpose(0,2,1))
self.keras_model = keras.models.Sequential()
conv_layer = keras.layers.convolutional.Convolution1D(
nb_filter=2, filter_length=4, subsample_length=2,
#re. input_shape=(51,10), that is, putting the channel
#axis last; this is actually due to the bug
#that seems to date back to v0.2.0...
#https://github.com/fchollet/keras/blob/0.2.0/keras/layers/convolutional.py#L88
activation="relu", input_shape=(51,10))
self.keras_model.add(conv_layer)
self.keras_model.add(keras.layers.convolutional.MaxPooling1D(
pool_length=4, stride=2))
if (self.keras_version > 0.2):
self.keras_model.add(keras.layers.convolutional.AveragePooling1D(
pool_length=4, stride=2))
else:
pass #there was no average pooling in 0.2.0 it seems
self.keras_model.add(keras.layers.core.Flatten())
self.keras_model.add(keras.layers.core.Dense(output_dim=1))
self.keras_model.add(keras.layers.core.Activation("sigmoid"))
self.keras_model.compile(loss="mse", optimizer="sgd")
if (self.keras_version <= 0.3):
self.keras_output_fprop_func = compile_func(
[self.keras_model.layers[0].input],
self.keras_model.layers[-1].get_output(False))
grad = theano.grad(theano.tensor.sum(
self.keras_model.layers[-2].get_output(False)[:,0]),
self.keras_model.layers[0].input)
self.grad_func = theano.function(
[self.keras_model.layers[0].input],
grad, allow_input_downcast=True)
else:
keras_output_fprop_func = compile_func(
[self.keras_model.layers[0].input,
keras.backend.learning_phase()],
self.keras_model.layers[-1].output)
self.keras_output_fprop_func =\
lambda x: keras_output_fprop_func(x,False)
grad = theano.grad(theano.tensor.sum(
self.keras_model.layers[-2].output[:,0]),
self.keras_model.layers[0].input)
grad_func = theano.function(
[self.keras_model.layers[0].input,
keras.backend.learning_phase()],
grad, allow_input_downcast=True,
on_unused_input='ignore')
self.grad_func = lambda x: grad_func(x, False)
评论列表
文章目录