def batchnorm_conversion(layer, name, verbose, **kwargs):
import keras
if (hasattr(keras,'__version__')):
keras_version = float(keras.__version__[0:3])
else:
keras_version = 0.2
if (keras_version <= 0.3):
std = np.array(layer.running_std.get_value())
epsilon = layer.epsilon
else:
std = np.sqrt(np.array(layer.running_std.get_value()+layer.epsilon))
epsilon = 0
return [blobs.BatchNormalization(
name=name,
verbose=verbose,
gamma=np.array(layer.gamma.get_value()),
beta=np.array(layer.beta.get_value()),
axis=layer.axis,
mean=np.array(layer.running_mean.get_value()),
std=std,
epsilon=epsilon)]
评论列表
文章目录