def conv2d(nb_filter, k_size=3, downsample=False):
from keras.layers import Convolution2D
from keras.regularizers import l2
def f(x):
subsample = (2, 2) if downsample else (1, 1)
border_mode = 'valid' if k_size == 1 else 'same'
return Convolution2D(
nb_filter=nb_filter, nb_row=k_size, nb_col=k_size, subsample=subsample,
init='glorot_normal', W_regularizer=l2(_Wreg_l2), border_mode=border_mode)(x)
return f
trainer.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录