def add_weight(layer,
shape,
name,
initializer='random_uniform',
regularizer=None,
constraint=None):
initializer = get_initializer(initializer)
if keras_2:
return layer.add_weight(initializer=initializer,
shape=shape,
name=name,
regularizer=regularizer,
constraint=constraint)
else:
# create weight
w = initializer(shape, name=name)
# add to trainable_weights
if not hasattr(layer, 'trainable_weights'):
layer.trainable_weights = []
layer.trainable_weights.append(w)
# add to regularizers
if regularizer:
if not hasattr(layer, 'regularizers'):
layer.regularizers = []
regularizer.set_param(w)
layer.regularizers.append(regularizer)
return w
评论列表
文章目录