def test_experiment_fit_gen(self, get_model, get_loss_metric,
get_custom_l, get_callback_fix):
new_session()
model, metrics, cust_objects = prepare_model(get_model(get_custom_l),
get_loss_metric,
get_custom_l)
model_name = model.__class__.__name__
_, data_val_use = make_data(train_samples, test_samples)
expe = Experiment(model)
for val in [1, data_val_use]:
gen, data, data_stream = make_gen(batch_size)
if val == 1:
val, data_2, data_stream_2 = make_gen(batch_size)
expe.fit_gen([gen], [val], nb_epoch=2,
model=model,
metrics=metrics,
custom_objects=cust_objects,
samples_per_epoch=64,
nb_val_samples=128,
verbose=2, overwrite=True,
callbacks=get_callback_fix)
close_gens(gen, data, data_stream)
if val == 1:
close_gens(val, data_2, data_stream_2)
if K.backend() == 'tensorflow':
K.clear_session()
print(self)
评论列表
文章目录