substitute_blackbox.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:ZOO-Attack 作者: huanzhang12 项目源码 文件源码
def data_cifar10():
    """
    Preprocess CIFAR10 dataset
    :return:
    """

    # These values are specific to CIFAR10
    img_rows = 32
    img_cols = 32
    nb_classes = 10

    # the data, shuffled and split between train and test sets
    (X_train, y_train), (X_test, y_test) = cifar10.load_data()

    if keras.backend.image_dim_ordering() == 'th':
        X_train = X_train.reshape(X_train.shape[0], 3, img_rows, img_cols)
        X_test = X_test.reshape(X_test.shape[0], 3, img_rows, img_cols)
    else:
        X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 3)
        X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 3)
    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    print('X_train shape:', X_train.shape)
    print(X_train.shape[0], 'train samples')
    print(X_test.shape[0], 'test samples')

    # convert class vectors to binary class matrices
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    return X_train, Y_train, X_test, Y_test
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号