def test_experiment_fit(self, get_model, get_loss_metric,
get_custom_l, get_callback_fix):
new_session()
data, data_val = make_data(train_samples, test_samples)
model, metrics, cust_objects = prepare_model(get_model(get_custom_l),
get_loss_metric,
get_custom_l)
expe = Experiment(model)
for mod in [None, model]:
for data_val_loc in [None, data_val]:
expe.fit([data], [data_val_loc], model=mod, nb_epoch=2,
batch_size=batch_size, metrics=metrics,
custom_objects=cust_objects, overwrite=True,
callbacks=get_callback_fix)
expe.backend_name = 'another_backend'
expe.load_model()
expe.load_model(expe.mod_id, expe.data_id)
assert expe.data_id is not None
assert expe.mod_id is not None
assert expe.params_dump is not None
if K.backend() == 'tensorflow':
K.clear_session()
print(self)
评论列表
文章目录