def TimeDistributedResNet50(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs):
"""
Constructs a time distributed `keras.models.Model` according to the ResNet50 specifications.
:param inputs: input tensor (e.g. an instance of `keras.layers.Input`)
:param blocks: the network’s residual architecture
:param include_top: if true, includes classification layers
:param classes: number of classes to classify (include_top must be true)
Usage:
>>> import keras_resnet.models
>>> shape, classes = (224, 224, 3), 1000
>>> x = keras.layers.Input(shape)
>>> y = keras_resnet.models.TimeDistributedResNet50(x)
>>> y = keras.layers.TimeDistributed(keras.layers.Flatten())(y.output)
>>> y = keras.layers.TimeDistributed(keras.layers.Dense(classes, activation="softmax"))(y)
>>> model = keras.models.Model(x, y)
>>> model.compile("adam", "categorical_crossentropy", ["accuracy"])
"""
if blocks is None:
blocks = [3, 4, 6, 3]
return TimeDistributedResNet(inputs, blocks, block=keras_resnet.blocks.time_distributed_bottleneck_2d, include_top=include_top, classes=classes, *args, **kwargs)
_time_distributed_2d.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录