def build_model():
input_tensor = Input(shape=(224, 224, 3))
resnet_model = ResNet50(include_top=False, weights='imagenet', input_tensor=input_tensor)
dense = Flatten()( \
Dense(2048, activation='relu')( \
BN()( \
resnet_model.layers[-1].output ) ) )
result = Activation('sigmoid')( \
Dense(2048, activation="linear")(\
dense) )
model = Model(inputs=resnet_model.input, outputs=result)
for layer in model.layers[:139]: # default 179
#print(layer)
if 'BatchNormalization' in str(layer):
...
else:
layer.trainable = False
model.compile(loss='binary_crossentropy', optimizer='adam')
return model
deep_food.py 文件源码
python
阅读 35
收藏 0
点赞 0
评论 0
评论列表
文章目录