deep_food.py 文件源码

python
阅读 35 收藏 0 点赞 0 评论 0

项目:keras-resnet-food-reverse-engineering 作者: GINK03 项目源码 文件源码
def build_model():
  input_tensor = Input(shape=(224, 224, 3))
  resnet_model = ResNet50(include_top=False, weights='imagenet', input_tensor=input_tensor)

  dense  = Flatten()( \
             Dense(2048, activation='relu')( \
               BN()( \
             resnet_model.layers[-1].output ) ) )
  result = Activation('sigmoid')( \
                Dense(2048, activation="linear")(\
                 dense) )

  model = Model(inputs=resnet_model.input, outputs=result)
  for layer in model.layers[:139]: # default 179
    #print(layer)
    if 'BatchNormalization' in str(layer):
      ...
    else:
      layer.trainable = False
  model.compile(loss='binary_crossentropy', optimizer='adam')
  return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号