def pred():
item_index = pickle.loads(open("cookpad/item_index.pkl", "rb").read())
index_items = { index:item for item, index in item_index.items()}
model = build_model()
model = load_model(sorted(glob.glob('models/model00060.model'))[-1])
target_size = (224,224)
dir_path = "to_pred/*"
max_size = len(glob.glob(dir_path))
for i, name in enumerate(glob.glob(dir_path)):
try:
img = Image.open(name)
except OSError as e:
continue
print(i, max_size, name.split('/')[-1])
w, h = img.size
if w > h :
blank = Image.new('RGB', (w, w))
if w <= h :
blank = Image.new('RGB', (h, h))
blank.paste(img, (0, 0) )
blank = blank.resize( target_size )
Xs = np.array([np.asanyarray(blank)])
result = model.predict(Xs)
ares = [(index_items[index], w) for index, w in enumerate(result.tolist()[0]) ]
for en, (item, w) in enumerate(sorted(ares, key=lambda x:x[1]*-1)[:10]):
print(en, item, w)
deep_food.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录