def train_process(self):
client = GAClient.Client()
for model in self.population.values():
# if getattr(model, 'parent', None) is not None:
# has parents means muatetion and weight change, so need to save weights
keras.models.save_model(model.model, model.config.model_path)
model.graph.save_params(model.config.output_path+'/graph.json')
kwargs = dict(
name=model.config.name,
epochs=model.config.epochs,
verbose=model.config.verbose,
limit_data=model.config.limit_data,
dataset_type=model.config.dataset_type
)
if parallel:
client.run_self(kwargs)
else:
name, score = GAClient.run(**kwargs)
setattr(self.population[name], 'score', score)
if parallel:
client.wait()
for name, score in client.scores.items():
setattr(self.population[name], 'score', score)
评论列表
文章目录