def merge_csv_orign():
df_empty = pandas.DataFrame(columns=['seriesuid','coord_x','coord_y','coord_z','probability',])
src_dir =settings.VAL_NODULE_DETECTION_DIR+'predictions10_luna16_fs/'
# src_dir =settings.VAL_NODULE_DETECTION_DIR
# for r in glob.glob(src_dir + "*_candidates_1.csv"):
for r in glob.glob(src_dir + "*.csv"):
csv=pandas.read_csv(r)
del csv['diameter']
del csv['diameter_mm']
del csv['anno_index']
file_name = ntpath.basename(r)
# patient_id = file_name.replace("_candidates_1.csv", "")
patient_id = file_name.replace(".csv", "")
csv['seriesuid']=patient_id
csv = csv[csv["probability"] >= 0.95]
df_empty = df_empty.append(csv)
id = df_empty['seriesuid']
df_empty.drop(labels=['seriesuid'], axis=1,inplace = True)
df_empty.insert(0, 'seriesuid', id)
df_empty.rename(columns={'coord_x':'coordX','coord_y':'coordY','coord_z':'coordZ'}, inplace = True)
df_empty.to_csv("./output_val/prediction_can_val3.csv",index=False)
step6_predict_nodules_validation.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录