def get_patient_xyz(path_f):
candidate_index = 0
only_patient = "197063290812663596858124411210"
only_patient = None
patient_list=[]
for subject_no in range(settings.TEST_SUBSET_START_INDEX, settings.TEST_SUBSET_TRAIN_NUM):
src_dir = settings.RAW_SRC_DIR + "test_subset0" + str(subject_no) + "/"
for src_path in glob.glob(src_dir + "*.mhd"):
if only_patient is not None and only_patient not in src_path:
continue
patient_id = ntpath.basename(src_path).replace(".mhd", "")
print(candidate_index, " patient: ", patient_id)
if patient_id=='LKDS-00395' or patient_id == 'LKDS-00434'or patient_id == 'LKDS-00384' or patient_id == 'LKDS-00186':
continue
pos_annos = get_patient_xyz_do(src_path, patient_id,path_f)
patient_list.extend(pos_annos)
candidate_index += 1
df_patient_list = pandas.DataFrame(patient_list, columns=["seriesuid", "coordX", "coordY", "coordZ","probability"])
print("len of can:",len(df_patient_list))
df_patient_list.to_csv("./output_val/prediction_submisssion_luna_manal.csv", index=False)
step6_predict_nodules.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录