def gradient_threshold(in_file, in_segm, thresh=1.0, out_file=None):
""" Compute a threshold from the histogram of the magnitude gradient image """
import os.path as op
import numpy as np
import nibabel as nb
from scipy import ndimage as sim
struc = sim.iterate_structure(sim.generate_binary_structure(3, 2), 2)
if out_file is None:
fname, ext = op.splitext(op.basename(in_file))
if ext == '.gz':
fname, ext2 = op.splitext(fname)
ext = ext2 + ext
out_file = op.abspath('{}_gradmask{}'.format(fname, ext))
imnii = nb.load(in_file)
hdr = imnii.get_header().copy()
hdr.set_data_dtype(np.uint8) # pylint: disable=no-member
data = imnii.get_data().astype(np.float32)
mask = np.zeros_like(data, dtype=np.uint8) # pylint: disable=no-member
mask[data > 15.] = 1
segdata = nb.load(in_segm).get_data().astype(np.uint8)
segdata[segdata > 0] = 1
segdata = sim.binary_dilation(segdata, struc, iterations=2, border_value=1).astype(np.uint8) # pylint: disable=no-member
mask[segdata > 0] = 1
mask = sim.binary_closing(mask, struc, iterations=2).astype(np.uint8) # pylint: disable=no-member
# Remove small objects
label_im, nb_labels = sim.label(mask)
artmsk = np.zeros_like(mask)
if nb_labels > 2:
sizes = sim.sum(mask, label_im, list(range(nb_labels + 1)))
ordered = list(reversed(sorted(zip(sizes, list(range(nb_labels + 1))))))
for _, label in ordered[2:]:
mask[label_im == label] = 0
artmsk[label_im == label] = 1
mask = sim.binary_fill_holes(mask, struc).astype(np.uint8) # pylint: disable=no-member
nb.Nifti1Image(mask, imnii.get_affine(), hdr).to_filename(out_file)
return out_file
评论列表
文章目录