model.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:ugali 作者: DarkEnergySurvey 项目源码 文件源码
def observableFractionCDF(self, mask, distance_modulus, mass_min=0.1):
        """
        Compute observable fraction of stars with masses greater than mass_min in each 
        pixel in the interior region of the mask. Incorporates simplistic
        photometric errors.

        ADW: Careful, this function is fragile! The selection here should
             be the same as mask.restrictCatalogToObservable space. However,
             for technical reasons it is faster to do the calculation with
             broadcasting here.
        ADW: This function is currently a rate-limiting step in the likelihood 
             calculation. Could it be faster?
        """
        method = 'step'

        mass_init,mass_pdf,mass_act,mag_1,mag_2 = self.sample(mass_min=mass_min,full_data_range=False)

        mag_1 = mag_1+distance_modulus
        mag_2 = mag_2+distance_modulus

        mask_1,mask_2 = mask.mask_roi_unique.T

        mag_err_1 = mask.photo_err_1(mask_1[:,np.newaxis]-mag_1)
        mag_err_2 = mask.photo_err_2(mask_2[:,np.newaxis]-mag_2)

        # "upper" bound set by maglim
        delta_hi_1 = (mask_1[:,np.newaxis]-mag_1)/mag_err_1
        delta_hi_2 = (mask_2[:,np.newaxis]-mag_2)/mag_err_2

        # "lower" bound set by bins_mag (maglim shouldn't be 0)
        delta_lo_1 = (mask.roi.bins_mag[0]-mag_1)/mag_err_1
        delta_lo_2 = (mask.roi.bins_mag[0]-mag_2)/mag_err_2

        cdf_1 = norm_cdf(delta_hi_1) - norm_cdf(delta_lo_1)
        cdf_2 = norm_cdf(delta_hi_2) - norm_cdf(delta_lo_2)
        cdf = cdf_1*cdf_2

        if method is None or method == 'none':
            comp_cdf = cdf
        elif self.band_1_detection == True:
            comp = mask.mask_1.completeness(mag_1, method=method)
            comp_cdf = comp*cdf
        elif self.band_1_detection == False:
            comp =mask.mask_2.completeness(mag_2, method=method)
            comp_cdf = comp*cdf
        else:
            comp_1 = mask.mask_1.completeness(mag_1, method=method)
            comp_2 = mask.mask_2.completeness(mag_2, method=method)
            comp_cdf = comp_1*comp_2*cdf

        observable_fraction = (mass_pdf[np.newaxis]*comp_cdf).sum(axis=-1)
        return observable_fraction[mask.mask_roi_digi[mask.roi.pixel_interior_cut]]
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号