def candidates_to_image(cands,radius):
image_names = []
for subset in xrange(0,10):
subset_names = glob.glob("../data/subset{0}/*.mhd".format(subset))
names = [os.path.split(x)[1].replace('.mhd','') for x in subset_names]
image_names.append(names)
previous_candidate = ""
images = []
image = []
origin = []
spacing = []
number = 0
for candidate in tqdm(cands.values):
if candidate[0] != previous_candidate:
number = 0
previous_candidate = candidate[0]
for image_subset in xrange(0,10):
if candidate[0] in image_names[image_subset]:
image,origin,spacing = load_itk_image("../data/subset{0}/{1}.mhd".format(image_subset,candidate[0]))
break
coords = world_2_voxel([candidate[3],candidate[2],candidate[1]],origin,spacing)
im = image_part_from_candidate(image,coords,radius)
#images.append(im)
if candidate[4]:
label = "true"
else:
label = "false"
scipy.misc.imsave('../data/samples/{0}_{1}_{2}.jpg'.format(candidate[0],number,label), im)
number += 1
return images
评论列表
文章目录