def adjust_prediction(self, prediction):
new_prediction = prediction
labeled, n_objects = ndimage.label(prediction > 0)
max_volume = 0
volumes = {}
for object_n in range(1, n_objects + 1):
volume = np.sum(prediction[labeled == object_n])
if volume > max_volume:
max_volume = volume
volumes.update({object_n: volume})
for object_n, volume in volumes.iteritems():
if volume < self.threshold * max_volume:
new_prediction[labeled == object_n] = 0
return new_prediction
评论列表
文章目录