def deepdream(net, base_img, iter_n=11, octave_n=4, octave_scale=1.4,
end='inception_4c/output', clip=True, **step_params):
#BACKUP high detail: def deepdream(net, base_img, iter_n=12, octave_n=6, octave_scale=1.6,end='inception_5b/pool_proj', clip=True, **step_params):
#deepdream(net, base_img, iter_n=10, octave_n=7, octave_scale=1.6,end='prob', clip=False, **step_params):
#function params>>net, base_img, iter_n=10, octave_n=4, octave_scale=1.4, end='inception_5b/5x5', clip=True, **step_params
# prepare base images for all octaves
octaves = [preprocess(net, base_img)]
for i in xrange(octave_n-1):
octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))
src = net.blobs['data']
detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
for octave, octave_base in enumerate(octaves[::-1]):
h, w = octave_base.shape[-2:]
if octave > 0:
# upscale details from the previous octave
h1, w1 = detail.shape[-2:]
detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)
src.reshape(1,3,h,w) # resize the network's input image size
src.data[0] = octave_base+detail
for i in xrange(iter_n):
make_step(net, end=end, clip=clip, **step_params)
# visualization
vis = deprocess(net, src.data[0])
if not clip: # adjust image contrast if clipping is disabled
vis = vis*(255.0/np.percentile(vis, 99.98))
showarray(vis)
print octave, i, end, vis.shape
clear_output(wait=True)
# extract details produced on the current octave
detail = src.data[0]-octave_base
# returning the resulting image
return deprocess(net, src.data[0])
#///////////////////////////////////////////////////////////////
评论列表
文章目录