lda_utils.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:LDA-REST 作者: valentinarho 项目源码 文件源码
def compute_tf(data, stopwords_list, language, use_lemmer=True, min_df=2, max_df=0.8):
    """
    Compute the tf matrix for the provided data
    :param language: 'en' or 'it'
    :param data:
    :param stopwords_list:
    :param use_lemmer:
    :param min_df:
    :param max_df:
    :return:
    """
    lemmer_tokenizer = None

    if use_lemmer:
        if language == 'it':
            lemmer_tokenizer = LemNormalizeIt
        else:
            lemmer_tokenizer = LemNormalize

    min_df = min_df if len(data) > min_df else 1
    max_df = max_df if max_df * len(data) >= min_df else 1.0

    # tf
    tf_vectorizer = CountVectorizer(tokenizer=lemmer_tokenizer,
                                    max_df=max_df, min_df=min_df,
                                    max_features=None,
                                    stop_words=stopwords_list,
                                    token_pattern="[a-zA-Z]{3,}")

    try:
        tf = tf_vectorizer.fit_transform(data)
        tf_features_names = tf_vectorizer.get_feature_names()
    except:
        logging.warning('The computed tf matrix is empty. Check stopwords.')
        tf = []
        tf_features_names = []

    return tf, tf_features_names
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号