def make_lda(self, nt, iterations):
# '''
# description: sets important attributes and creates lda model
# params: nt-number of topics for lda
# iterations: number of iterations for lda
# dim: 2d or 3d grpah
# threshold: minimum percentage of the maximum topic in a document which can be included in a "cluster"
# '''
self.nt = nt
self.cvectorizer = CountVectorizer(min_df=5, stop_words='english')
cvz = self.cvectorizer.fit_transform(self.descriptions)
# train an LDA model
self.lda_model = lda.LDA(n_topics=nt, n_iter=iterations)
self.X_topics_original = self.lda_model.fit_transform(cvz)
#initialize current stuff
self.X_topics_current = self.X_topics_original
self.titles_current = self.titles_original
评论列表
文章目录