def __init__(self, S, A, n_neighbors=5, weights='uniform', algorithm='auto', metric='minkowski', memory_fit=100, memory_size=100, **kwargs):
#assert self.lr_mode == 'constant', 'KNNQ is only compatible with constant learning rates.'
self.S = S
self.A = A
self.states = deque([])
self.targets = deque([])
self.memory_fit = memory_fit
self.memory_size = memory_size
self.count = 0
self.neigh = KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm, metric=metric)
super(KNNQ, self).__init__(**kwargs)
self.update_mode = 'set'
评论列表
文章目录