test_neighbors.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:Parallel-SGD 作者: angadgill 项目源码 文件源码
def test_kneighbors_regressor_sparse(n_samples=40,
                                     n_features=5,
                                     n_test_pts=10,
                                     n_neighbors=5,
                                     random_state=0):
    # Test radius-based regression on sparse matrices
    # Like the above, but with various types of sparse matrices
    rng = np.random.RandomState(random_state)
    X = 2 * rng.rand(n_samples, n_features) - 1
    y = ((X ** 2).sum(axis=1) < .25).astype(np.int)

    for sparsemat in SPARSE_TYPES:
        knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors,
                                            algorithm='auto')
        knn.fit(sparsemat(X), y)
        for sparsev in SPARSE_OR_DENSE:
            X2 = sparsev(X)
            assert_true(np.mean(knn.predict(X2).round() == y) > 0.95)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号