job_description_feature_extraction.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:job-salary-prediction 作者: soton-data-mining 项目源码 文件源码
def cosine_knn(corpus_vector, queries_vector, k=10):
    """

    :param corpus_vector: vectorized document text
    :param queries_vector: vectorized query text
    :param k: number of neighbours
    :return: (distances, indices) of knn
    """
    # based on
    # http://scikit-learn.org/stable/modules/neighbors.html
    # http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html

    # since we want to use cosine similarity to account for document length
    # we have to use bruteforce search
    # parallelize to number of cores with n_jobs -1
    nbrs = NearestNeighbors(n_neighbors=k, algorithm='brute', metric='cosine')
    nbrs.fit(corpus_vector)
    distances, indices = nbrs.kneighbors(queries_vector)
    return distances, indices
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号