def knn_classify(self, out_folder_path, training_set, test_set, training_labels, test_labels, k=1, msg=""):
print("message: " + msg)
out_file_pre_path = os.path.join(out_folder_path, "knn" + str(k) + msg) # Any output file should extend this path
knn_classifier = neighbors.KNeighborsClassifier(k, weights='distance')
knn_classifier.fit(training_set, training_labels)
predicted = knn_classifier.predict(test_set)
success = accuracy_score(test_labels, predicted, normalize=False)
conf_matrix = self.__retrieve_confusion_matrix(test_labels, predicted, out_file_pre_path)
return conf_matrix, success
classification.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录