def knn_clf(observations, n_neighbors):
# ??????
range1 = [20, 30]
len1 = len(range(range1[0], range1[1]))
range2 = [110, 120]
len2 = len(range(range2[0], range2[1]))
training_index = list(range(range1[0], range1[1])) + list(range(range2[0],
range2[1]))
training_data = observations[training_index, :]
training_label = np.ones(len1+len2, dtype='int32')
training_label[len1:] = 2
# ??????
knn = KNeighborsClassifier(n_neighbors = 3)#, weights = 'distance')
knn.fit(training_data, training_label)
# ??
knn_pre = knn.predict(observations)
print('????????')
for i in range(8):
print(knn_pre[i*10:(i+1)*10])
print('????????????')
for i in range(8,12):
print(knn_pre[i*10:(i+1)*10])
knn_clf.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录